

Lecture 11

Convex games exercise

Exercise 1

Consider the following 2-player game, Γ :

$$J^i(x^1, x^2) = \frac{1}{2}(x^1)^2 + \frac{1}{2}(x^2)^2 + cx^1x^2 + b^i x^i,$$

where $c, b^i \in \mathbb{R}$ are constants and $x^i \in \mathbb{R}$, $i=1,2$.

- Show that the game is convex.
- Compute the game pseudo-gradient.
- Under which conditions on c , the pseudo-gradient is monotone?
- What is the necessary & sufficient for $(x^1, x^2) \in \mathbb{R}^2$ to be a Nash equilibrium of Γ ?
Under which conditions on $c \& b^i$, $i=1,2$, it exists?
- Argue that if $x^i \in [0, k] \subseteq \mathbb{R}$, $i=1,2$, the game always has a Nash equilibrium.

Solutions :

a) Notice that $J^i(x^i, \bar{x}^i)$ is convex in x^i
for fixed \bar{x}^i ; since

$$\frac{\partial J^i}{\partial x^i}(x^i, \bar{x}^i) = x^i + c\bar{x}^i + b^i$$

$$\frac{\partial^2 J^i}{(\partial x^i)^2}(x^i, \bar{x}^i) = 1 > 0.$$

Namely, each player i 's cost is (strongly) convex quadratic in her decision variable.

Furthermore, the action spaces are $K^i = \mathbb{R}$,
which is convex

\Rightarrow game is convex.

$$b) F(x^1, x^2) = \begin{bmatrix} \frac{\partial J^1}{\partial x^1}(x^1, x^2) \\ \frac{\partial J^2}{\partial x^2}(x^1, x^2) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & c \\ c & 1 \end{bmatrix}}_{\in \mathbb{R}^{2 \times 2}} \underbrace{\begin{bmatrix} x^1 \\ x^2 \end{bmatrix}}_{\in \mathbb{R}^2} + \begin{bmatrix} b^1 \\ b^2 \end{bmatrix}$$

$$M \in \mathbb{R}^{2 \times 2}$$

$$m \in \mathbb{R}^2$$

c) $F_p(x^1, x^2)$ is affine : $F_p(x) = Mx + b$

It is monotone if M is positive

semidefinite. Since M is symmetric,

this is equivalent to eigenvalues of M being non-negative.

The eigenvalues of M are given by solutions to the characteristic equation

$$(\lambda - 1)^2 - c^2 = 0$$

$$\lambda^2 - 2\lambda - c^2 + 1 = 0$$

$$\Rightarrow \lambda = \frac{2 \pm \sqrt{4 + 4(c^2 - 1)}}{2} = 1 \pm \sqrt{c^2}$$

For both to be non-negative, we need,

$$|c| < 1$$

$$(d) J^1(x^1, x^2) \leq J^1(\tilde{x}^1, x^2), \forall \tilde{x}^1 \in \mathbb{R}$$

$$J^2(x^1, x^2) \leq J^2(\tilde{x}^1, \tilde{x}^2), \forall \tilde{x}^2 \in \mathbb{R}$$

from player-wise convexity $\forall x^i \in \mathbb{R}, i=1,2$,

Nash equilibrium if and only if.

$$\nabla_{x^1} J^1(x^1, x^2) = 0$$

$$\nabla_{x^2} J^2(x^1, x^2) = 0$$

$$\Leftrightarrow \underbrace{\begin{bmatrix} 1 & c \\ c & 1 \end{bmatrix}}_M \begin{bmatrix} x^1 \\ x^2 \end{bmatrix} = -\underbrace{\begin{bmatrix} b^1 \\ b^2 \end{bmatrix}}_m, M \in \mathbb{R}^{2 \times 2}$$

we need the above set of linear equations

to have a solution. $\Leftrightarrow m \in \text{Range}(M)$

Note that a sufficient condition for $m \in \text{Range}(M)$

is that M is invertible, namely,

no eigenvalues at 0 $\Leftrightarrow |C| \neq 1$.